Universe reheating after inflation.

نویسندگان

  • Shtanov
  • Traschen
  • Brandenberger
چکیده

We study the problem of scalar particle production after inflation by an in-flaton field which is oscillating rapidly relative to the expansion of the universe. We use the framework of the chaotic inflation scenario with quartic and quadratic inflaton potentials. Particles produced are described by a quantum scalar field χ, which is coupled to the inflaton via linear and quadratic couplings. The particle production effect is studied using the standard technique of Bogolyubov transformations. Particular attention is paid to parametric resonance phenomena which take place in the presence of the quickly oscillating inflaton field. We have found that in the region of applicability of perturbation theory the effects of parametric resonance are crucial, and estimates based on first order Born approximation often underestimate the particle production. In the case of the quartic inflaton potential V (ϕ) = λϕ 4 , the particle production process is very efficient for either type of coupling between the inflaton field and the scalar field χ even for small values of coupling constants. The reheating temperature of the universe in this case is [λ log (1/λ)] −1 times larger than the corresponding estimates based on first order Born approximation. In the case of the quadratic inflaton potential the reheating process depends crucially on the type of coupling between the inflaton and the scalar field χ and on the magnitudes of the coupling constants. If the inflaton coupling to fermions and its linear (in inflaton field) coupling to scalar fields are suppressed, then, as previously discussed by Kofman, Linde and Starobinsky (see e.g. Ref. 13), the inflaton field will eventually decouple from the rest of the matter , and the residual inflaton oscillations may provide the (cold) dark matter of the universe. In the case of the quadratic inflaton potential we obtain the lowest and the highest possible bounds on the effective energy density of the inflaton field when it freezes out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating the Stage of Exponential Expansion in the Early Universe - a possible alternative with no reheating

In the standard picture, the inflationary universe is in a supercooled state which ends with a short time, large scale reheating period, after which the universe goes into a radiation dominated stage. An alternative is proposed here in which the radiation energy density smoothly decreases all during an inflation-like stage and with no discontinuity enters the subsequent radiation dominated stag...

متن کامل

Reheating the Universe after String Theory Inflation

In String theory realizations of inflation, the end point of inflation is often brane-anti brane annihilation. We consider the processes of reheating of the Standard Model universe after brane inflation. We identify the channels of inflaton energy decay, cascading from tachyon annihilation through massive closed string loops, KK modes, and brane displacement moduli to the lighter standard model...

متن کامل

Reheating a multi-throat universe by brane motion

We propose a mechanism of reheating after inflation in multi-throat scenarios of warped extra dimensions. Validity of an effective field theory on the standard model (SM) brane requires that the position of the SM brane during inflation be different from the position after inflation. The latter is supposed to be near the tip of the SM throat but the former is not. After inflation, when the Hubb...

متن کامل

The Fate of SUSY Flat Directions and their Role in Reheating

We consider the role of supersymmetric flat directions in reheating the Universe after inflation. One or more flat directions can develop large vevs during inflation, which can potentially affect reheating by slowing down scattering processes among inflaton decay products or by coming to dominate the energy density of the Universe. Both effects occur only if flat directions are sufficiently lon...

متن کامل

Thermal Leptogenesis and Gauge Mediation

We show that a mini-thermal inflation occurs naturally in a class of gauge mediation models of supersymmetry (SUSY) breaking, provided that the reheating temperature TR of the primary inflation is much higher than the SUSY-breaking scale, say TR > 1010 GeV. The reheating process of the thermal inflation produces an amount of entropy, which dilutes the number density of relic gravitinos. This di...

متن کامل

ar X iv : h ep - t h / 06 10 05 4 v 2 21 N ov 2 00 6 Inflation without Inflaton ( s )

We propose a model for early universe cosmology without the need for fundamental scalar fields. Cosmic acceleration and phenomenologically viable reheating of the universe results from a series of energy transitions, where during each transition vacuum energy is converted to thermal radiation. We show that this ‘cascading universe’ can lead to successful generation of adiabatic density fluctuat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. D, Particles and fields

دوره 51 10  شماره 

صفحات  -

تاریخ انتشار 1995